MakeItFrom.com
Menu (ESC)

6101 Aluminum vs. C70250 Copper

6101 aluminum belongs to the aluminum alloys classification, while C70250 copper belongs to the copper alloys. There are 20 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6101 aluminum and the bottom bar is C70250 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
120
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
44

Thermal Properties

Latent Heat of Fusion, J/g 400
220
Maximum Temperature: Mechanical, °C 160
210
Melting Completion (Liquidus), °C 650
1100
Melting Onset (Solidus), °C 620
1080
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 220 to 230
170
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 57 to 60
36 to 50
Electrical Conductivity: Equal Weight (Specific), % IACS 190 to 200
37 to 51

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 2.7
8.9
Embodied Carbon, kg CO2/kg material 8.3
2.9
Embodied Energy, MJ/kg 150
45
Embodied Water, L/kg 1190
310

Common Calculations

Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 50
18
Thermal Diffusivity, mm2/s 89 to 93
49

Alloy Composition

Aluminum (Al), % 97.6 to 99.4
0
Boron (B), % 0 to 0.060
0
Chromium (Cr), % 0 to 0.030
0
Copper (Cu), % 0 to 0.1
92.7 to 97.5
Iron (Fe), % 0 to 0.5
0
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0.35 to 0.8
0.050 to 0.3
Manganese (Mn), % 0 to 0.030
0 to 0.1
Nickel (Ni), % 0
2.2 to 4.2
Silicon (Si), % 0.3 to 0.7
0.25 to 1.2
Zinc (Zn), % 0 to 0.1
0 to 1.0
Residuals, % 0
0 to 0.5