MakeItFrom.com
Menu (ESC)

6101 Aluminum vs. C99600 Bronze

6101 aluminum belongs to the aluminum alloys classification, while C99600 bronze belongs to the copper alloys. There are 17 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6101 aluminum and the bottom bar is C99600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
150
Elongation at Break, % 10 to 25
27 to 34
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
56

Thermal Properties

Latent Heat of Fusion, J/g 400
240
Maximum Temperature: Mechanical, °C 160
200
Melting Completion (Liquidus), °C 650
1100
Melting Onset (Solidus), °C 620
1050
Specific Heat Capacity, J/kg-K 900
440
Thermal Expansion, µm/m-K 23
19

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
22
Density, g/cm3 2.7
8.1
Embodied Carbon, kg CO2/kg material 8.3
3.2
Embodied Energy, MJ/kg 150
51
Embodied Water, L/kg 1190
300

Common Calculations

Stiffness to Weight: Axial, points 14
10
Stiffness to Weight: Bending, points 50
22

Alloy Composition

Aluminum (Al), % 97.6 to 99.4
1.0 to 2.8
Boron (B), % 0 to 0.060
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.030
0
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 0 to 0.1
50.8 to 60
Iron (Fe), % 0 to 0.5
0 to 0.2
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0.35 to 0.8
0
Manganese (Mn), % 0 to 0.030
39 to 45
Nickel (Ni), % 0
0 to 0.2
Silicon (Si), % 0.3 to 0.7
0 to 0.1
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.1
0 to 0.2
Residuals, % 0
0 to 0.3