MakeItFrom.com
Menu (ESC)

6101A Aluminum vs. AISI 201L Stainless Steel

6101A aluminum belongs to the aluminum alloys classification, while AISI 201L stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6101A aluminum and the bottom bar is AISI 201L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 11
22 to 46
Fatigue Strength, MPa 80
270 to 530
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 130
520 to 660
Tensile Strength: Ultimate (UTS), MPa 220
740 to 1040
Tensile Strength: Yield (Proof), MPa 190
290 to 790

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 160
880
Melting Completion (Liquidus), °C 640
1410
Melting Onset (Solidus), °C 630
1370
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 200
15
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 55
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 180
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.3
2.6
Embodied Energy, MJ/kg 150
38
Embodied Water, L/kg 1190
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
210 to 300
Resilience: Unit (Modulus of Resilience), kJ/m3 280
220 to 1570
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 23
27 to 37
Strength to Weight: Bending, points 30
24 to 30
Thermal Diffusivity, mm2/s 84
4.0
Thermal Shock Resistance, points 10
16 to 23

Alloy Composition

Aluminum (Al), % 97.9 to 99.3
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.4
67.9 to 75
Magnesium (Mg), % 0.4 to 0.9
0
Manganese (Mn), % 0
5.5 to 7.5
Nickel (Ni), % 0
3.5 to 5.5
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.3 to 0.7
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.1
0