MakeItFrom.com
Menu (ESC)

6101A Aluminum vs. EN 1.4021 Stainless Steel

6101A aluminum belongs to the aluminum alloys classification, while EN 1.4021 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6101A aluminum and the bottom bar is EN 1.4021 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 11
11 to 17
Fatigue Strength, MPa 80
240 to 380
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 130
390 to 530
Tensile Strength: Ultimate (UTS), MPa 220
630 to 880
Tensile Strength: Yield (Proof), MPa 190
390 to 670

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 160
760
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 630
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 200
30
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 55
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 180
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.0
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.3
1.9
Embodied Energy, MJ/kg 150
27
Embodied Water, L/kg 1190
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
88 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 280
400 to 1160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 23
23 to 31
Strength to Weight: Bending, points 30
21 to 26
Thermal Diffusivity, mm2/s 84
8.1
Thermal Shock Resistance, points 10
22 to 31

Alloy Composition

Aluminum (Al), % 97.9 to 99.3
0
Carbon (C), % 0
0.16 to 0.25
Chromium (Cr), % 0
12 to 14
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.4
83.2 to 87.8
Magnesium (Mg), % 0.4 to 0.9
0
Manganese (Mn), % 0
0 to 1.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.3 to 0.7
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Residuals, % 0 to 0.1
0