MakeItFrom.com
Menu (ESC)

6101A Aluminum vs. EN 1.4959 Stainless Steel

6101A aluminum belongs to the aluminum alloys classification, while EN 1.4959 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6101A aluminum and the bottom bar is EN 1.4959 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 11
40
Fatigue Strength, MPa 80
170
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 130
430
Tensile Strength: Ultimate (UTS), MPa 220
630
Tensile Strength: Yield (Proof), MPa 190
190

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 160
1090
Melting Completion (Liquidus), °C 640
1400
Melting Onset (Solidus), °C 630
1350
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 200
12
Thermal Expansion, µm/m-K 23
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 55
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 180
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 8.3
5.4
Embodied Energy, MJ/kg 150
76
Embodied Water, L/kg 1190
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
190
Resilience: Unit (Modulus of Resilience), kJ/m3 280
96
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 23
22
Strength to Weight: Bending, points 30
20
Thermal Diffusivity, mm2/s 84
3.2
Thermal Shock Resistance, points 10
15

Alloy Composition

Aluminum (Al), % 97.9 to 99.3
0.25 to 0.65
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0
19 to 22
Cobalt (Co), % 0
0 to 0.5
Copper (Cu), % 0 to 0.050
0 to 0.5
Iron (Fe), % 0 to 0.4
39.4 to 50.5
Magnesium (Mg), % 0.4 to 0.9
0
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0
30 to 34
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0.3 to 0.7
0 to 0.7
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0.25 to 0.65
Residuals, % 0 to 0.1
0