MakeItFrom.com
Menu (ESC)

6101A Aluminum vs. Type 3 Magnetic Alloy

6101A aluminum belongs to the aluminum alloys classification, while Type 3 magnetic alloy belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6101A aluminum and the bottom bar is Type 3 magnetic alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
180
Elongation at Break, % 11
43
Fatigue Strength, MPa 80
170
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
70
Shear Strength, MPa 130
380
Tensile Strength: Ultimate (UTS), MPa 220
550
Tensile Strength: Yield (Proof), MPa 190
210

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 160
910
Melting Completion (Liquidus), °C 640
1370
Melting Onset (Solidus), °C 630
1320
Specific Heat Capacity, J/kg-K 900
450
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 55
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 180
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 2.7
8.7
Embodied Carbon, kg CO2/kg material 8.3
8.7
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1190
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
190
Resilience: Unit (Modulus of Resilience), kJ/m3 280
120
Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 51
22
Strength to Weight: Axial, points 23
18
Strength to Weight: Bending, points 30
17
Thermal Shock Resistance, points 10
18

Alloy Composition

Aluminum (Al), % 97.9 to 99.3
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
2.0 to 3.0
Cobalt (Co), % 0
0 to 0.5
Copper (Cu), % 0 to 0.050
4.0 to 6.0
Iron (Fe), % 0 to 0.4
9.9 to 19
Magnesium (Mg), % 0.4 to 0.9
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
75 to 78
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0.3 to 0.7
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Residuals, % 0 to 0.1
0