MakeItFrom.com
Menu (ESC)

6101B Aluminum vs. AISI 304Cu Stainless Steel

6101B aluminum belongs to the aluminum alloys classification, while AISI 304Cu stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6101B aluminum and the bottom bar is AISI 304Cu stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 9.1 to 13
45
Fatigue Strength, MPa 62 to 70
190
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 120 to 150
370
Tensile Strength: Ultimate (UTS), MPa 190 to 250
530
Tensile Strength: Yield (Proof), MPa 140 to 180
210

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 160
930
Melting Completion (Liquidus), °C 640
1410
Melting Onset (Solidus), °C 630
1370
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 210
13
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 57
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 190
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
16
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
3.0
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1190
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 23
190
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 240
110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 20 to 25
19
Strength to Weight: Bending, points 27 to 32
19
Thermal Diffusivity, mm2/s 87
3.5
Thermal Shock Resistance, points 8.5 to 11
12

Alloy Composition

Aluminum (Al), % 98.2 to 99.3
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 0 to 0.050
3.0 to 4.0
Iron (Fe), % 0.1 to 0.3
63.9 to 72
Magnesium (Mg), % 0.35 to 0.6
0
Manganese (Mn), % 0 to 0.050
0 to 2.0
Nickel (Ni), % 0
8.0 to 10
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.3 to 0.6
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.1
0