MakeItFrom.com
Menu (ESC)

6101B Aluminum vs. EN 1.4590 Stainless Steel

6101B aluminum belongs to the aluminum alloys classification, while EN 1.4590 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6101B aluminum and the bottom bar is EN 1.4590 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 9.1 to 13
26
Fatigue Strength, MPa 62 to 70
190
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 120 to 150
310
Tensile Strength: Ultimate (UTS), MPa 190 to 250
480
Tensile Strength: Yield (Proof), MPa 140 to 180
270

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 160
860
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 630
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 210
26
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 57
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 190
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.3
2.5
Embodied Energy, MJ/kg 150
37
Embodied Water, L/kg 1190
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 23
110
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 240
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 20 to 25
17
Strength to Weight: Bending, points 27 to 32
18
Thermal Diffusivity, mm2/s 87
7.0
Thermal Shock Resistance, points 8.5 to 11
17

Alloy Composition

Aluminum (Al), % 98.2 to 99.3
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 17.5
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0.1 to 0.3
79.7 to 83.7
Magnesium (Mg), % 0.35 to 0.6
0
Manganese (Mn), % 0 to 0.050
0 to 1.0
Niobium (Nb), % 0
0.35 to 0.55
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.3 to 0.6
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 0 to 0.1
0
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0 to 0.1
0