MakeItFrom.com
Menu (ESC)

6101B Aluminum vs. EN 1.4823 Stainless Steel

6101B aluminum belongs to the aluminum alloys classification, while EN 1.4823 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6101B aluminum and the bottom bar is EN 1.4823 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 9.1 to 13
3.4
Fatigue Strength, MPa 62 to 70
130
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
79
Tensile Strength: Ultimate (UTS), MPa 190 to 250
620
Tensile Strength: Yield (Proof), MPa 140 to 180
290

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 640
1400
Melting Onset (Solidus), °C 630
1360
Specific Heat Capacity, J/kg-K 900
490
Thermal Conductivity, W/m-K 210
17
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 57
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 190
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
16
Density, g/cm3 2.7
7.6
Embodied Carbon, kg CO2/kg material 8.3
3.0
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1190
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 23
17
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 240
200
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
26
Strength to Weight: Axial, points 20 to 25
23
Strength to Weight: Bending, points 27 to 32
21
Thermal Diffusivity, mm2/s 87
4.5
Thermal Shock Resistance, points 8.5 to 11
17

Alloy Composition

Aluminum (Al), % 98.2 to 99.3
0
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0
25 to 28
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0.1 to 0.3
60.9 to 70.7
Magnesium (Mg), % 0.35 to 0.6
0
Manganese (Mn), % 0 to 0.050
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
3.0 to 6.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.3 to 0.6
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.1
0