MakeItFrom.com
Menu (ESC)

6101B Aluminum vs. EN AC-46300 Aluminum

Both 6101B aluminum and EN AC-46300 aluminum are aluminum alloys. They have 88% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6101B aluminum and the bottom bar is EN AC-46300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
73
Elongation at Break, % 9.1 to 13
1.1
Fatigue Strength, MPa 62 to 70
79
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 190 to 250
200
Tensile Strength: Yield (Proof), MPa 140 to 180
110

Thermal Properties

Latent Heat of Fusion, J/g 400
490
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 640
630
Melting Onset (Solidus), °C 630
530
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 210
120
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 57
27
Electrical Conductivity: Equal Weight (Specific), % IACS 190
84

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
2.9
Embodied Carbon, kg CO2/kg material 8.3
7.7
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1190
1060

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 23
1.9
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 240
89
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
49
Strength to Weight: Axial, points 20 to 25
20
Strength to Weight: Bending, points 27 to 32
27
Thermal Diffusivity, mm2/s 87
47
Thermal Shock Resistance, points 8.5 to 11
9.1

Alloy Composition

Aluminum (Al), % 98.2 to 99.3
84 to 90
Copper (Cu), % 0 to 0.050
3.0 to 4.0
Iron (Fe), % 0.1 to 0.3
0 to 0.8
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0.35 to 0.6
0.3 to 0.6
Manganese (Mn), % 0 to 0.050
0.2 to 0.65
Nickel (Ni), % 0
0 to 0.3
Silicon (Si), % 0.3 to 0.6
6.5 to 8.0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 0.1
0 to 0.65
Residuals, % 0
0 to 0.55