MakeItFrom.com
Menu (ESC)

6101B Aluminum vs. SAE-AISI 1042 Steel

6101B aluminum belongs to the aluminum alloys classification, while SAE-AISI 1042 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6101B aluminum and the bottom bar is SAE-AISI 1042 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 9.1 to 13
14 to 18
Fatigue Strength, MPa 62 to 70
230 to 370
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 120 to 150
380 to 420
Tensile Strength: Ultimate (UTS), MPa 190 to 250
620 to 700
Tensile Strength: Yield (Proof), MPa 140 to 180
340 to 580

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 160
400
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 630
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 210
52
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 57
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 190
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.8
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
1.4
Embodied Energy, MJ/kg 150
18
Embodied Water, L/kg 1190
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 23
87 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 240
320 to 900
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 20 to 25
22 to 25
Strength to Weight: Bending, points 27 to 32
21 to 22
Thermal Diffusivity, mm2/s 87
14
Thermal Shock Resistance, points 8.5 to 11
20 to 22

Alloy Composition

Aluminum (Al), % 98.2 to 99.3
0
Carbon (C), % 0
0.4 to 0.47
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0.1 to 0.3
98.5 to 99
Magnesium (Mg), % 0.35 to 0.6
0
Manganese (Mn), % 0 to 0.050
0.6 to 0.9
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.3 to 0.6
0
Sulfur (S), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.1
0