MakeItFrom.com
Menu (ESC)

6101B Aluminum vs. C90900 Bronze

6101B aluminum belongs to the aluminum alloys classification, while C90900 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6101B aluminum and the bottom bar is C90900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 9.1 to 13
15
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 190 to 250
280
Tensile Strength: Yield (Proof), MPa 140 to 180
140

Thermal Properties

Latent Heat of Fusion, J/g 400
190
Maximum Temperature: Mechanical, °C 160
160
Melting Completion (Liquidus), °C 640
980
Melting Onset (Solidus), °C 630
820
Specific Heat Capacity, J/kg-K 900
360
Thermal Conductivity, W/m-K 210
65
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 57
11
Electrical Conductivity: Equal Weight (Specific), % IACS 190
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.7
8.7
Embodied Carbon, kg CO2/kg material 8.3
3.9
Embodied Energy, MJ/kg 150
64
Embodied Water, L/kg 1190
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 23
35
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 240
89
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 50
18
Strength to Weight: Axial, points 20 to 25
8.8
Strength to Weight: Bending, points 27 to 32
11
Thermal Diffusivity, mm2/s 87
21
Thermal Shock Resistance, points 8.5 to 11
10

Alloy Composition

Aluminum (Al), % 98.2 to 99.3
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Copper (Cu), % 0 to 0.050
86 to 89
Iron (Fe), % 0.1 to 0.3
0 to 0.15
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 0.35 to 0.6
0
Manganese (Mn), % 0 to 0.050
0
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0.3 to 0.6
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
12 to 14
Zinc (Zn), % 0 to 0.1
0 to 0.25
Residuals, % 0
0 to 0.6