MakeItFrom.com
Menu (ESC)

6101B Aluminum vs. C93700 Bronze

6101B aluminum belongs to the aluminum alloys classification, while C93700 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6101B aluminum and the bottom bar is C93700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
99
Elongation at Break, % 9.1 to 13
20
Fatigue Strength, MPa 62 to 70
90
Poisson's Ratio 0.33
0.35
Shear Modulus, GPa 26
37
Tensile Strength: Ultimate (UTS), MPa 190 to 250
240
Tensile Strength: Yield (Proof), MPa 140 to 180
130

Thermal Properties

Latent Heat of Fusion, J/g 400
170
Maximum Temperature: Mechanical, °C 160
140
Melting Completion (Liquidus), °C 640
930
Melting Onset (Solidus), °C 630
760
Specific Heat Capacity, J/kg-K 900
350
Thermal Conductivity, W/m-K 210
47
Thermal Expansion, µm/m-K 23
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 57
10
Electrical Conductivity: Equal Weight (Specific), % IACS 190
10

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
33
Density, g/cm3 2.7
8.9
Embodied Carbon, kg CO2/kg material 8.3
3.5
Embodied Energy, MJ/kg 150
57
Embodied Water, L/kg 1190
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 23
40
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 240
79
Stiffness to Weight: Axial, points 14
6.2
Stiffness to Weight: Bending, points 50
17
Strength to Weight: Axial, points 20 to 25
7.5
Strength to Weight: Bending, points 27 to 32
9.6
Thermal Diffusivity, mm2/s 87
15
Thermal Shock Resistance, points 8.5 to 11
9.4

Alloy Composition

Aluminum (Al), % 98.2 to 99.3
0 to 0.0050
Antimony (Sb), % 0
0 to 0.5
Copper (Cu), % 0 to 0.050
78 to 82
Iron (Fe), % 0.1 to 0.3
0 to 0.15
Lead (Pb), % 0
8.0 to 11
Magnesium (Mg), % 0.35 to 0.6
0
Manganese (Mn), % 0 to 0.050
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0.3 to 0.6
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
9.0 to 11
Zinc (Zn), % 0 to 0.1
0 to 0.8
Residuals, % 0
0 to 1.0