MakeItFrom.com
Menu (ESC)

6105 Aluminum vs. 324.0 Aluminum

Both 6105 aluminum and 324.0 aluminum are aluminum alloys. They have a moderately high 92% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 6105 aluminum and the bottom bar is 324.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
71
Elongation at Break, % 9.0 to 16
3.0 to 4.0
Fatigue Strength, MPa 95 to 130
77 to 89
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 190 to 280
210 to 310
Tensile Strength: Yield (Proof), MPa 120 to 270
110 to 270

Thermal Properties

Latent Heat of Fusion, J/g 410
500
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 650
610
Melting Onset (Solidus), °C 600
550
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 180 to 190
150
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 46 to 50
34
Electrical Conductivity: Equal Weight (Specific), % IACS 150 to 170
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.3
7.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1090

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 27
6.8 to 8.9
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 550
85 to 510
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 51
52
Strength to Weight: Axial, points 20 to 29
22 to 32
Strength to Weight: Bending, points 28 to 35
29 to 38
Thermal Diffusivity, mm2/s 72 to 79
62
Thermal Shock Resistance, points 8.6 to 12
9.7 to 14

Alloy Composition

Aluminum (Al), % 97.2 to 99
87.3 to 92.2
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.1
0.4 to 0.6
Iron (Fe), % 0 to 0.35
0 to 1.2
Magnesium (Mg), % 0.45 to 0.8
0.4 to 0.7
Manganese (Mn), % 0 to 0.1
0 to 0.5
Nickel (Ni), % 0
0 to 0.3
Silicon (Si), % 0.6 to 1.0
7.0 to 8.0
Titanium (Ti), % 0 to 0.1
0 to 0.2
Zinc (Zn), % 0 to 0.1
0 to 1.0
Residuals, % 0
0 to 0.2

Comparable Variants