MakeItFrom.com
Menu (ESC)

6105 Aluminum vs. 6012 Aluminum

Both 6105 aluminum and 6012 aluminum are aluminum alloys. They have a very high 97% of their average alloy composition in common.

For each property being compared, the top bar is 6105 aluminum and the bottom bar is 6012 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
69
Elongation at Break, % 9.0 to 16
9.1 to 11
Fatigue Strength, MPa 95 to 130
55 to 100
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 120 to 170
130 to 190
Tensile Strength: Ultimate (UTS), MPa 190 to 280
220 to 320
Tensile Strength: Yield (Proof), MPa 120 to 270
110 to 260

Thermal Properties

Latent Heat of Fusion, J/g 410
400
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 650
640
Melting Onset (Solidus), °C 600
570
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 180 to 190
160
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 46 to 50
45
Electrical Conductivity: Equal Weight (Specific), % IACS 150 to 170
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.9
Embodied Carbon, kg CO2/kg material 8.3
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 27
21 to 28
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 550
94 to 480
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
48
Strength to Weight: Axial, points 20 to 29
22 to 32
Strength to Weight: Bending, points 28 to 35
29 to 37
Thermal Diffusivity, mm2/s 72 to 79
62
Thermal Shock Resistance, points 8.6 to 12
10 to 14

Alloy Composition

Aluminum (Al), % 97.2 to 99
92.2 to 98
Bismuth (Bi), % 0
0 to 0.7
Chromium (Cr), % 0 to 0.1
0 to 0.3
Copper (Cu), % 0 to 0.1
0 to 0.1
Iron (Fe), % 0 to 0.35
0 to 0.5
Lead (Pb), % 0
0.4 to 2.0
Magnesium (Mg), % 0.45 to 0.8
0.6 to 1.2
Manganese (Mn), % 0 to 0.1
0.4 to 1.0
Silicon (Si), % 0.6 to 1.0
0.6 to 1.4
Titanium (Ti), % 0 to 0.1
0 to 0.2
Zinc (Zn), % 0 to 0.1
0 to 0.3
Residuals, % 0
0 to 0.15