MakeItFrom.com
Menu (ESC)

6105 Aluminum vs. ASTM A36 Carbon Steel

6105 aluminum belongs to the aluminum alloys classification, while ASTM A36 carbon steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6105 aluminum and the bottom bar is ASTM A36 carbon steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 9.0 to 16
22
Fatigue Strength, MPa 95 to 130
200
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 120 to 170
300
Tensile Strength: Ultimate (UTS), MPa 190 to 280
480
Tensile Strength: Yield (Proof), MPa 120 to 270
290

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 160
400
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 600
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 180 to 190
50
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 46 to 50
12
Electrical Conductivity: Equal Weight (Specific), % IACS 150 to 170
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.8
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.3
1.4
Embodied Energy, MJ/kg 150
18
Embodied Water, L/kg 1180
44

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 27
92
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 550
220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 20 to 29
17
Strength to Weight: Bending, points 28 to 35
17
Thermal Diffusivity, mm2/s 72 to 79
14
Thermal Shock Resistance, points 8.6 to 12
16

Alloy Composition

Aluminum (Al), % 97.2 to 99
0
Carbon (C), % 0
0 to 0.26
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.35
99.25 to 100
Magnesium (Mg), % 0.45 to 0.8
0
Manganese (Mn), % 0 to 0.1
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.6 to 1.0
0 to 0.4
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0