MakeItFrom.com
Menu (ESC)

6105 Aluminum vs. ASTM A369 Grade FP12

6105 aluminum belongs to the aluminum alloys classification, while ASTM A369 grade FP12 belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6105 aluminum and the bottom bar is ASTM A369 grade FP12.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 9.0 to 16
20
Fatigue Strength, MPa 95 to 130
170
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 120 to 170
300
Tensile Strength: Ultimate (UTS), MPa 190 to 280
470
Tensile Strength: Yield (Proof), MPa 120 to 270
250

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 160
430
Melting Completion (Liquidus), °C 650
1470
Melting Onset (Solidus), °C 600
1430
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 180 to 190
45
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 46 to 50
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 150 to 170
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.8
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.3
1.6
Embodied Energy, MJ/kg 150
21
Embodied Water, L/kg 1180
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 27
81
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 550
160
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 20 to 29
17
Strength to Weight: Bending, points 28 to 35
17
Thermal Diffusivity, mm2/s 72 to 79
12
Thermal Shock Resistance, points 8.6 to 12
14

Alloy Composition

Aluminum (Al), % 97.2 to 99
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0 to 0.1
0.8 to 1.3
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.35
96.8 to 98.4
Magnesium (Mg), % 0.45 to 0.8
0
Manganese (Mn), % 0 to 0.1
0.3 to 0.61
Molybdenum (Mo), % 0
0.44 to 0.65
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.6 to 1.0
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0