MakeItFrom.com
Menu (ESC)

6105 Aluminum vs. AWS BVAu-4

6105 aluminum belongs to the aluminum alloys classification, while AWS BVAu-4 belongs to the otherwise unclassified metals. There are 15 material properties with values for both materials. Properties with values for just one material (16, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6105 aluminum and the bottom bar is AWS BVAu-4.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Poisson's Ratio 0.33
0.4
Shear Modulus, GPa 26
41
Tensile Strength: Ultimate (UTS), MPa 190 to 280
190

Thermal Properties

Latent Heat of Fusion, J/g 410
100
Melting Completion (Liquidus), °C 650
950
Melting Onset (Solidus), °C 600
950
Specific Heat Capacity, J/kg-K 900
190
Thermal Expansion, µm/m-K 23
14

Otherwise Unclassified Properties

Density, g/cm3 2.7
17

Common Calculations

Stiffness to Weight: Axial, points 14
3.6
Stiffness to Weight: Bending, points 51
9.3
Strength to Weight: Axial, points 20 to 29
3.0
Strength to Weight: Bending, points 28 to 35
4.2
Thermal Shock Resistance, points 8.6 to 12
8.7

Alloy Composition

Aluminum (Al), % 97.2 to 99
0
Cadmium (Cd), % 0
0 to 0.0010
Carbon (C), % 0
0 to 0.0050
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.1
0
Gold (Au), % 0
81.5 to 82.5
Iron (Fe), % 0 to 0.35
0
Lead (Pb), % 0
0 to 0.0020
Magnesium (Mg), % 0.45 to 0.8
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0
17.5 to 18.5
Phosphorus (P), % 0
0 to 0.0020
Silicon (Si), % 0.6 to 1.0
0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0 to 0.0010
Residuals, % 0 to 0.15
0