MakeItFrom.com
Menu (ESC)

6105 Aluminum vs. AWS ER80S-B2

6105 aluminum belongs to the aluminum alloys classification, while AWS ER80S-B2 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6105 aluminum and the bottom bar is AWS ER80S-B2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 9.0 to 16
21
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 190 to 280
620
Tensile Strength: Yield (Proof), MPa 120 to 270
540

Thermal Properties

Latent Heat of Fusion, J/g 410
260
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 600
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 180 to 190
40
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 46 to 50
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 150 to 170
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.0
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
1.6
Embodied Energy, MJ/kg 150
21
Embodied Water, L/kg 1180
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 27
130
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 550
760
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 20 to 29
22
Strength to Weight: Bending, points 28 to 35
21
Thermal Diffusivity, mm2/s 72 to 79
11
Thermal Shock Resistance, points 8.6 to 12
18

Alloy Composition

Aluminum (Al), % 97.2 to 99
0
Carbon (C), % 0
0.070 to 0.12
Chromium (Cr), % 0 to 0.1
1.2 to 1.5
Copper (Cu), % 0 to 0.1
0 to 0.35
Iron (Fe), % 0 to 0.35
95.2 to 97.5
Magnesium (Mg), % 0.45 to 0.8
0
Manganese (Mn), % 0 to 0.1
0.4 to 0.7
Molybdenum (Mo), % 0
0.4 to 0.65
Nickel (Ni), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.6 to 1.0
0.4 to 0.7
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.5