MakeItFrom.com
Menu (ESC)

6105 Aluminum vs. EN 1.4122 Stainless Steel

6105 aluminum belongs to the aluminum alloys classification, while EN 1.4122 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6105 aluminum and the bottom bar is EN 1.4122 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 9.0 to 16
14
Fatigue Strength, MPa 95 to 130
260 to 360
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 120 to 170
480 to 520
Tensile Strength: Ultimate (UTS), MPa 190 to 280
790 to 850
Tensile Strength: Yield (Proof), MPa 120 to 270
450 to 630

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 160
870
Melting Completion (Liquidus), °C 650
1440
Melting Onset (Solidus), °C 600
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 180 to 190
15
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 46 to 50
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 150 to 170
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.3
2.4
Embodied Energy, MJ/kg 150
33
Embodied Water, L/kg 1180
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 27
93 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 550
520 to 1000
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 20 to 29
28 to 31
Strength to Weight: Bending, points 28 to 35
25 to 26
Thermal Diffusivity, mm2/s 72 to 79
4.0
Thermal Shock Resistance, points 8.6 to 12
28 to 30

Alloy Composition

Aluminum (Al), % 97.2 to 99
0
Carbon (C), % 0
0.33 to 0.45
Chromium (Cr), % 0 to 0.1
15.5 to 17.5
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.35
77.2 to 83.4
Magnesium (Mg), % 0.45 to 0.8
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Molybdenum (Mo), % 0
0.8 to 1.3
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.6 to 1.0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0