MakeItFrom.com
Menu (ESC)

6105 Aluminum vs. EN 1.4646 Stainless Steel

6105 aluminum belongs to the aluminum alloys classification, while EN 1.4646 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6105 aluminum and the bottom bar is EN 1.4646 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 9.0 to 16
34
Fatigue Strength, MPa 95 to 130
340
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 120 to 170
500
Tensile Strength: Ultimate (UTS), MPa 190 to 280
750
Tensile Strength: Yield (Proof), MPa 120 to 270
430

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 160
910
Melting Completion (Liquidus), °C 650
1390
Melting Onset (Solidus), °C 600
1340
Specific Heat Capacity, J/kg-K 900
480
Thermal Expansion, µm/m-K 23
17

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
13
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.3
2.8
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1180
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 27
220
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 550
460
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 20 to 29
27
Strength to Weight: Bending, points 28 to 35
24
Thermal Shock Resistance, points 8.6 to 12
16

Alloy Composition

Aluminum (Al), % 97.2 to 99
0
Carbon (C), % 0
0.020 to 0.1
Chromium (Cr), % 0 to 0.1
17 to 19
Copper (Cu), % 0 to 0.1
1.5 to 3.0
Iron (Fe), % 0 to 0.35
59 to 67.3
Magnesium (Mg), % 0.45 to 0.8
0
Manganese (Mn), % 0 to 0.1
10.5 to 12.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
3.5 to 4.5
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0.6 to 1.0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0