MakeItFrom.com
Menu (ESC)

6105 Aluminum vs. EN 2.4668 Nickel

6105 aluminum belongs to the aluminum alloys classification, while EN 2.4668 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6105 aluminum and the bottom bar is EN 2.4668 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 9.0 to 16
14
Fatigue Strength, MPa 95 to 130
590
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
75
Shear Strength, MPa 120 to 170
840
Tensile Strength: Ultimate (UTS), MPa 190 to 280
1390
Tensile Strength: Yield (Proof), MPa 120 to 270
1160

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 160
980
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 600
1410
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 180 to 190
13
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 46 to 50
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 150 to 170
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.7
8.3
Embodied Carbon, kg CO2/kg material 8.3
13
Embodied Energy, MJ/kg 150
190
Embodied Water, L/kg 1180
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 27
180
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 550
3490
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
23
Strength to Weight: Axial, points 20 to 29
46
Strength to Weight: Bending, points 28 to 35
33
Thermal Diffusivity, mm2/s 72 to 79
3.5
Thermal Shock Resistance, points 8.6 to 12
40

Alloy Composition

Aluminum (Al), % 97.2 to 99
0.3 to 0.7
Boron (B), % 0
0.0020 to 0.0060
Carbon (C), % 0
0.020 to 0.080
Chromium (Cr), % 0 to 0.1
17 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0 to 0.1
0 to 0.3
Iron (Fe), % 0 to 0.35
11.2 to 24.6
Magnesium (Mg), % 0.45 to 0.8
0
Manganese (Mn), % 0 to 0.1
0 to 0.35
Molybdenum (Mo), % 0
2.8 to 3.3
Nickel (Ni), % 0
50 to 55
Niobium (Nb), % 0
4.7 to 5.5
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0.6 to 1.0
0 to 0.35
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
0.6 to 1.2
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0