MakeItFrom.com
Menu (ESC)

6105 Aluminum vs. EN 2.4889 Nickel

6105 aluminum belongs to the aluminum alloys classification, while EN 2.4889 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6105 aluminum and the bottom bar is EN 2.4889 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 9.0 to 16
39
Fatigue Strength, MPa 95 to 130
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 120 to 170
490
Tensile Strength: Ultimate (UTS), MPa 190 to 280
720
Tensile Strength: Yield (Proof), MPa 120 to 270
270

Thermal Properties

Latent Heat of Fusion, J/g 410
350
Maximum Temperature: Mechanical, °C 160
1200
Melting Completion (Liquidus), °C 650
1350
Melting Onset (Solidus), °C 600
1300
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 180 to 190
13
Thermal Expansion, µm/m-K 23
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 46 to 50
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 150 to 170
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
42
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 8.3
6.9
Embodied Energy, MJ/kg 150
98
Embodied Water, L/kg 1180
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 27
220
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 550
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 20 to 29
25
Strength to Weight: Bending, points 28 to 35
22
Thermal Diffusivity, mm2/s 72 to 79
3.4
Thermal Shock Resistance, points 8.6 to 12
19

Alloy Composition

Aluminum (Al), % 97.2 to 99
0
Carbon (C), % 0
0.050 to 0.12
Cerium (Ce), % 0
0.030 to 0.090
Chromium (Cr), % 0 to 0.1
26 to 29
Copper (Cu), % 0 to 0.1
0 to 0.3
Iron (Fe), % 0 to 0.35
21 to 25
Magnesium (Mg), % 0.45 to 0.8
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Nickel (Ni), % 0
45 to 50.4
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.6 to 1.0
2.5 to 3.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0