MakeItFrom.com
Menu (ESC)

6105 Aluminum vs. Grade 30 Titanium

6105 aluminum belongs to the aluminum alloys classification, while grade 30 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6105 aluminum and the bottom bar is grade 30 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 9.0 to 16
23
Fatigue Strength, MPa 95 to 130
250
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
41
Shear Strength, MPa 120 to 170
240
Tensile Strength: Ultimate (UTS), MPa 190 to 280
390
Tensile Strength: Yield (Proof), MPa 120 to 270
350

Thermal Properties

Latent Heat of Fusion, J/g 410
420
Maximum Temperature: Mechanical, °C 160
320
Melting Completion (Liquidus), °C 650
1660
Melting Onset (Solidus), °C 600
1610
Specific Heat Capacity, J/kg-K 900
540
Thermal Conductivity, W/m-K 180 to 190
21
Thermal Expansion, µm/m-K 23
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 46 to 50
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 150 to 170
6.9

Otherwise Unclassified Properties

Density, g/cm3 2.7
4.5
Embodied Carbon, kg CO2/kg material 8.3
36
Embodied Energy, MJ/kg 150
600
Embodied Water, L/kg 1180
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 27
86
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 550
590
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
35
Strength to Weight: Axial, points 20 to 29
24
Strength to Weight: Bending, points 28 to 35
26
Thermal Diffusivity, mm2/s 72 to 79
8.6
Thermal Shock Resistance, points 8.6 to 12
30

Alloy Composition

Aluminum (Al), % 97.2 to 99
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.1
0
Cobalt (Co), % 0
0.2 to 0.8
Copper (Cu), % 0 to 0.1
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.35
0 to 0.3
Magnesium (Mg), % 0.45 to 0.8
0
Manganese (Mn), % 0 to 0.1
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Palladium (Pd), % 0
0.040 to 0.080
Silicon (Si), % 0.6 to 1.0
0
Titanium (Ti), % 0 to 0.1
98 to 99.76
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.4