MakeItFrom.com
Menu (ESC)

6105 Aluminum vs. Nickel 200

6105 aluminum belongs to the aluminum alloys classification, while nickel 200 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6105 aluminum and the bottom bar is nickel 200.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
180
Elongation at Break, % 9.0 to 16
23 to 44
Fatigue Strength, MPa 95 to 130
120 to 350
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
70
Shear Strength, MPa 120 to 170
300 to 340
Tensile Strength: Ultimate (UTS), MPa 190 to 280
420 to 540
Tensile Strength: Yield (Proof), MPa 120 to 270
120 to 370

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 160
900
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 600
1440
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 180 to 190
69
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 46 to 50
18
Electrical Conductivity: Equal Weight (Specific), % IACS 150 to 170
18

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
65
Density, g/cm3 2.7
8.9
Embodied Carbon, kg CO2/kg material 8.3
11
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 27
110 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 550
42 to 370
Stiffness to Weight: Axial, points 14
11
Stiffness to Weight: Bending, points 51
21
Strength to Weight: Axial, points 20 to 29
13 to 17
Strength to Weight: Bending, points 28 to 35
14 to 17
Thermal Diffusivity, mm2/s 72 to 79
17
Thermal Shock Resistance, points 8.6 to 12
13 to 16

Alloy Composition

Aluminum (Al), % 97.2 to 99
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.1
0 to 0.25
Iron (Fe), % 0 to 0.35
0 to 0.4
Magnesium (Mg), % 0.45 to 0.8
0
Manganese (Mn), % 0 to 0.1
0 to 0.35
Nickel (Ni), % 0
99 to 100
Silicon (Si), % 0.6 to 1.0
0 to 0.35
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0