MakeItFrom.com
Menu (ESC)

6105 Aluminum vs. C32000 Brass

6105 aluminum belongs to the aluminum alloys classification, while C32000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6105 aluminum and the bottom bar is C32000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 9.0 to 16
6.8 to 29
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
41
Shear Strength, MPa 120 to 170
180 to 280
Tensile Strength: Ultimate (UTS), MPa 190 to 280
270 to 470
Tensile Strength: Yield (Proof), MPa 120 to 270
78 to 390

Thermal Properties

Latent Heat of Fusion, J/g 410
190
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 650
1020
Melting Onset (Solidus), °C 600
990
Specific Heat Capacity, J/kg-K 900
380
Thermal Conductivity, W/m-K 180 to 190
160
Thermal Expansion, µm/m-K 23
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 46 to 50
36
Electrical Conductivity: Equal Weight (Specific), % IACS 150 to 170
37

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
28
Density, g/cm3 2.7
8.7
Embodied Carbon, kg CO2/kg material 8.3
2.6
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1180
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 27
30 to 59
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 550
28 to 680
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 51
18
Strength to Weight: Axial, points 20 to 29
8.8 to 15
Strength to Weight: Bending, points 28 to 35
11 to 16
Thermal Diffusivity, mm2/s 72 to 79
47
Thermal Shock Resistance, points 8.6 to 12
9.5 to 16

Alloy Composition

Aluminum (Al), % 97.2 to 99
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.1
83.5 to 86.5
Iron (Fe), % 0 to 0.35
0 to 0.1
Lead (Pb), % 0
1.5 to 2.2
Magnesium (Mg), % 0.45 to 0.8
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0
0 to 0.25
Silicon (Si), % 0.6 to 1.0
0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
10.6 to 15
Residuals, % 0
0 to 0.4