MakeItFrom.com
Menu (ESC)

6105 Aluminum vs. C69430 Brass

6105 aluminum belongs to the aluminum alloys classification, while C69430 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6105 aluminum and the bottom bar is C69430 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 9.0 to 16
17
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
42
Shear Strength, MPa 120 to 170
350
Tensile Strength: Ultimate (UTS), MPa 190 to 280
570
Tensile Strength: Yield (Proof), MPa 120 to 270
280

Thermal Properties

Latent Heat of Fusion, J/g 410
260
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 650
920
Melting Onset (Solidus), °C 600
820
Specific Heat Capacity, J/kg-K 900
410
Thermal Conductivity, W/m-K 180 to 190
26
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 46 to 50
6.2
Electrical Conductivity: Equal Weight (Specific), % IACS 150 to 170
6.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
27
Density, g/cm3 2.7
8.3
Embodied Carbon, kg CO2/kg material 8.3
2.7
Embodied Energy, MJ/kg 150
44
Embodied Water, L/kg 1180
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 27
80
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 550
340
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 51
19
Strength to Weight: Axial, points 20 to 29
19
Strength to Weight: Bending, points 28 to 35
18
Thermal Diffusivity, mm2/s 72 to 79
7.7
Thermal Shock Resistance, points 8.6 to 12
20

Alloy Composition

Aluminum (Al), % 97.2 to 99
0
Arsenic (As), % 0
0.030 to 0.060
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.1
80 to 83
Iron (Fe), % 0 to 0.35
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Magnesium (Mg), % 0.45 to 0.8
0
Manganese (Mn), % 0 to 0.1
0
Silicon (Si), % 0.6 to 1.0
3.5 to 4.5
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
11.4 to 16.5
Residuals, % 0
0 to 0.5