MakeItFrom.com
Menu (ESC)

6105 Aluminum vs. C86700 Bronze

6105 aluminum belongs to the aluminum alloys classification, while C86700 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6105 aluminum and the bottom bar is C86700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 9.0 to 16
17
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
41
Tensile Strength: Ultimate (UTS), MPa 190 to 280
630
Tensile Strength: Yield (Proof), MPa 120 to 270
250

Thermal Properties

Latent Heat of Fusion, J/g 410
180
Maximum Temperature: Mechanical, °C 160
130
Melting Completion (Liquidus), °C 650
880
Melting Onset (Solidus), °C 600
860
Specific Heat Capacity, J/kg-K 900
400
Thermal Conductivity, W/m-K 180 to 190
89
Thermal Expansion, µm/m-K 23
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 46 to 50
17
Electrical Conductivity: Equal Weight (Specific), % IACS 150 to 170
19

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
23
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.3
2.9
Embodied Energy, MJ/kg 150
49
Embodied Water, L/kg 1180
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 27
86
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 550
290
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 51
20
Strength to Weight: Axial, points 20 to 29
22
Strength to Weight: Bending, points 28 to 35
21
Thermal Diffusivity, mm2/s 72 to 79
28
Thermal Shock Resistance, points 8.6 to 12
21

Alloy Composition

Aluminum (Al), % 97.2 to 99
1.0 to 3.0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.1
55 to 60
Iron (Fe), % 0 to 0.35
1.0 to 3.0
Lead (Pb), % 0
0.5 to 1.5
Magnesium (Mg), % 0.45 to 0.8
0
Manganese (Mn), % 0 to 0.1
1.0 to 3.5
Nickel (Ni), % 0
0 to 1.0
Silicon (Si), % 0.6 to 1.0
0
Tin (Sn), % 0
0 to 1.5
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
30 to 38
Residuals, % 0
0 to 1.0