MakeItFrom.com
Menu (ESC)

6105 Aluminum vs. C93700 Bronze

6105 aluminum belongs to the aluminum alloys classification, while C93700 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6105 aluminum and the bottom bar is C93700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
99
Elongation at Break, % 9.0 to 16
20
Fatigue Strength, MPa 95 to 130
90
Poisson's Ratio 0.33
0.35
Shear Modulus, GPa 26
37
Tensile Strength: Ultimate (UTS), MPa 190 to 280
240
Tensile Strength: Yield (Proof), MPa 120 to 270
130

Thermal Properties

Latent Heat of Fusion, J/g 410
170
Maximum Temperature: Mechanical, °C 160
140
Melting Completion (Liquidus), °C 650
930
Melting Onset (Solidus), °C 600
760
Specific Heat Capacity, J/kg-K 900
350
Thermal Conductivity, W/m-K 180 to 190
47
Thermal Expansion, µm/m-K 23
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 46 to 50
10
Electrical Conductivity: Equal Weight (Specific), % IACS 150 to 170
10

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
33
Density, g/cm3 2.7
8.9
Embodied Carbon, kg CO2/kg material 8.3
3.5
Embodied Energy, MJ/kg 150
57
Embodied Water, L/kg 1180
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 27
40
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 550
79
Stiffness to Weight: Axial, points 14
6.2
Stiffness to Weight: Bending, points 51
17
Strength to Weight: Axial, points 20 to 29
7.5
Strength to Weight: Bending, points 28 to 35
9.6
Thermal Diffusivity, mm2/s 72 to 79
15
Thermal Shock Resistance, points 8.6 to 12
9.4

Alloy Composition

Aluminum (Al), % 97.2 to 99
0 to 0.0050
Antimony (Sb), % 0
0 to 0.5
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.1
78 to 82
Iron (Fe), % 0 to 0.35
0 to 0.15
Lead (Pb), % 0
8.0 to 11
Magnesium (Mg), % 0.45 to 0.8
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0.6 to 1.0
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
9.0 to 11
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0 to 0.8
Residuals, % 0
0 to 1.0