MakeItFrom.com
Menu (ESC)

6105 Aluminum vs. R30035 Cobalt

6105 aluminum belongs to the aluminum alloys classification, while R30035 cobalt belongs to the cobalt alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6105 aluminum and the bottom bar is R30035 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
220 to 230
Elongation at Break, % 9.0 to 16
9.0 to 46
Fatigue Strength, MPa 95 to 130
170 to 740
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
84 to 89
Tensile Strength: Ultimate (UTS), MPa 190 to 280
900 to 1900
Tensile Strength: Yield (Proof), MPa 120 to 270
300 to 1650

Thermal Properties

Latent Heat of Fusion, J/g 410
320
Melting Completion (Liquidus), °C 650
1440
Melting Onset (Solidus), °C 600
1320
Specific Heat Capacity, J/kg-K 900
440
Thermal Conductivity, W/m-K 180 to 190
11
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 46 to 50
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 150 to 170
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
100
Density, g/cm3 2.7
8.7
Embodied Carbon, kg CO2/kg material 8.3
10
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1180
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 27
160 to 320
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 550
210 to 5920
Stiffness to Weight: Axial, points 14
14 to 15
Stiffness to Weight: Bending, points 51
23 to 24
Strength to Weight: Axial, points 20 to 29
29 to 61
Strength to Weight: Bending, points 28 to 35
24 to 39
Thermal Diffusivity, mm2/s 72 to 79
3.0
Thermal Shock Resistance, points 8.6 to 12
23 to 46

Alloy Composition

Aluminum (Al), % 97.2 to 99
0
Boron (B), % 0
0 to 0.015
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0 to 0.1
19 to 21
Cobalt (Co), % 0
29.1 to 39
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.35
0 to 1.0
Magnesium (Mg), % 0.45 to 0.8
0
Manganese (Mn), % 0 to 0.1
0 to 0.15
Molybdenum (Mo), % 0
9.0 to 10.5
Nickel (Ni), % 0
33 to 37
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0.6 to 1.0
0 to 0.15
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.1
0 to 1.0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0