MakeItFrom.com
Menu (ESC)

6105 Aluminum vs. R60705 Alloy

6105 aluminum belongs to the aluminum alloys classification, while R60705 alloy belongs to the otherwise unclassified metals. There are 21 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6105 aluminum and the bottom bar is R60705 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
98
Elongation at Break, % 9.0 to 16
18
Fatigue Strength, MPa 95 to 130
290
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
37
Tensile Strength: Ultimate (UTS), MPa 190 to 280
540
Tensile Strength: Yield (Proof), MPa 120 to 270
430

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Specific Heat Capacity, J/kg-K 900
270
Thermal Conductivity, W/m-K 180 to 190
17
Thermal Expansion, µm/m-K 23
6.3

Otherwise Unclassified Properties

Density, g/cm3 2.7
6.7
Embodied Water, L/kg 1180
450

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 27
90
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 550
950
Stiffness to Weight: Axial, points 14
8.1
Stiffness to Weight: Bending, points 51
23
Strength to Weight: Axial, points 20 to 29
22
Strength to Weight: Bending, points 28 to 35
22
Thermal Diffusivity, mm2/s 72 to 79
9.5
Thermal Shock Resistance, points 8.6 to 12
63

Alloy Composition

Aluminum (Al), % 97.2 to 99
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.1
0 to 0.2
Copper (Cu), % 0 to 0.1
0
Hafnium (Hf), % 0
0 to 4.5
Hydrogen (H), % 0
0 to 0.0050
Iron (Fe), % 0 to 0.35
0 to 0.2
Magnesium (Mg), % 0.45 to 0.8
0
Manganese (Mn), % 0 to 0.1
0
Niobium (Nb), % 0
2.0 to 3.0
Nitrogen (N), % 0
0 to 0.025
Oxygen (O), % 0
0 to 0.18
Silicon (Si), % 0.6 to 1.0
0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Zirconium (Zr), % 0
91 to 98
Residuals, % 0 to 0.15
0