MakeItFrom.com
Menu (ESC)

6106 Aluminum vs. ACI-ASTM CH20 Steel

6106 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CH20 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6106 aluminum and the bottom bar is ACI-ASTM CH20 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 9.1
38
Fatigue Strength, MPa 88
290
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
78
Tensile Strength: Ultimate (UTS), MPa 290
610
Tensile Strength: Yield (Proof), MPa 220
350

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 660
1410
Melting Onset (Solidus), °C 610
1430
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 190
14
Thermal Expansion, µm/m-K 23
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 49
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 160
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
20
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
3.7
Embodied Energy, MJ/kg 150
53
Embodied Water, L/kg 1190
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
200
Resilience: Unit (Modulus of Resilience), kJ/m3 370
300
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 29
22
Strength to Weight: Bending, points 35
21
Thermal Diffusivity, mm2/s 78
3.7
Thermal Shock Resistance, points 13
15

Alloy Composition

Aluminum (Al), % 97.2 to 99.3
0
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0 to 0.2
22 to 26
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.35
54.7 to 66
Magnesium (Mg), % 0.4 to 0.8
0
Manganese (Mn), % 0.050 to 0.2
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
12 to 15
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.3 to 0.6
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0