MakeItFrom.com
Menu (ESC)

6106 Aluminum vs. ASTM A182 Grade F3V

6106 aluminum belongs to the aluminum alloys classification, while ASTM A182 grade F3V belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6106 aluminum and the bottom bar is ASTM A182 grade F3V.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 9.1
20
Fatigue Strength, MPa 88
330
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Shear Strength, MPa 170
410
Tensile Strength: Ultimate (UTS), MPa 290
660
Tensile Strength: Yield (Proof), MPa 220
470

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 160
470
Melting Completion (Liquidus), °C 660
1470
Melting Onset (Solidus), °C 610
1430
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 190
39
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 49
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 160
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
4.2
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.3
2.3
Embodied Energy, MJ/kg 150
33
Embodied Water, L/kg 1190
63

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
120
Resilience: Unit (Modulus of Resilience), kJ/m3 370
590
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 29
23
Strength to Weight: Bending, points 35
21
Thermal Diffusivity, mm2/s 78
10
Thermal Shock Resistance, points 13
19

Alloy Composition

Aluminum (Al), % 97.2 to 99.3
0
Boron (B), % 0
0.0010 to 0.0030
Carbon (C), % 0
0.050 to 0.18
Chromium (Cr), % 0 to 0.2
2.8 to 3.2
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.35
94.4 to 95.7
Magnesium (Mg), % 0.4 to 0.8
0
Manganese (Mn), % 0.050 to 0.2
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.3 to 0.6
0 to 0.1
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.1
0.015 to 0.035
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0