MakeItFrom.com
Menu (ESC)

6106 Aluminum vs. EN 1.3520 Steel

6106 aluminum belongs to the aluminum alloys classification, while EN 1.3520 steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6106 aluminum and the bottom bar is EN 1.3520 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
72
Tensile Strength: Ultimate (UTS), MPa 290
620 to 730

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Maximum Temperature: Mechanical, °C 160
430
Melting Completion (Liquidus), °C 660
1440
Melting Onset (Solidus), °C 610
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 190
43
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 49
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 160
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.6
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
1.5
Embodied Energy, MJ/kg 150
20
Embodied Water, L/kg 1190
54

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 29
22 to 26
Strength to Weight: Bending, points 35
21 to 23
Thermal Diffusivity, mm2/s 78
12
Thermal Shock Resistance, points 13
18 to 22

Alloy Composition

Aluminum (Al), % 97.2 to 99.3
0 to 0.050
Carbon (C), % 0
0.93 to 1.1
Chromium (Cr), % 0 to 0.2
1.4 to 1.7
Copper (Cu), % 0 to 0.25
0 to 0.3
Iron (Fe), % 0 to 0.35
95.9 to 97.2
Magnesium (Mg), % 0.4 to 0.8
0
Manganese (Mn), % 0.050 to 0.2
1.0 to 1.2
Molybdenum (Mo), % 0
0 to 0.1
Oxygen (O), % 0
0 to 0.0015
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.3 to 0.6
0.45 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0