MakeItFrom.com
Menu (ESC)

6106 Aluminum vs. EN 1.4422 Stainless Steel

6106 aluminum belongs to the aluminum alloys classification, while EN 1.4422 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6106 aluminum and the bottom bar is EN 1.4422 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 9.1
17
Fatigue Strength, MPa 88
380
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 170
520
Tensile Strength: Ultimate (UTS), MPa 290
850
Tensile Strength: Yield (Proof), MPa 220
630

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 160
760
Melting Completion (Liquidus), °C 660
1450
Melting Onset (Solidus), °C 610
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 190
16
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 49
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 160
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.3
2.7
Embodied Energy, MJ/kg 150
37
Embodied Water, L/kg 1190
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
130
Resilience: Unit (Modulus of Resilience), kJ/m3 370
1000
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 29
30
Strength to Weight: Bending, points 35
25
Thermal Diffusivity, mm2/s 78
4.3
Thermal Shock Resistance, points 13
31

Alloy Composition

Aluminum (Al), % 97.2 to 99.3
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0 to 0.2
11 to 13
Copper (Cu), % 0 to 0.25
0.2 to 0.8
Iron (Fe), % 0 to 0.35
76.8 to 83.5
Magnesium (Mg), % 0.4 to 0.8
0
Manganese (Mn), % 0.050 to 0.2
0 to 2.0
Molybdenum (Mo), % 0
1.3 to 1.8
Nickel (Ni), % 0
4.0 to 5.0
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.3 to 0.6
0 to 0.5
Sulfur (S), % 0
0 to 0.0030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0