MakeItFrom.com
Menu (ESC)

6106 Aluminum vs. EN 1.4439 Stainless Steel

6106 aluminum belongs to the aluminum alloys classification, while EN 1.4439 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6106 aluminum and the bottom bar is EN 1.4439 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 9.1
40
Fatigue Strength, MPa 88
270
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
79
Shear Strength, MPa 170
470
Tensile Strength: Ultimate (UTS), MPa 290
680
Tensile Strength: Yield (Proof), MPa 220
310

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 160
980
Melting Completion (Liquidus), °C 660
1460
Melting Onset (Solidus), °C 610
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 190
14
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 49
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 160
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
22
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.3
4.5
Embodied Energy, MJ/kg 150
61
Embodied Water, L/kg 1190
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
220
Resilience: Unit (Modulus of Resilience), kJ/m3 370
240
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 29
24
Strength to Weight: Bending, points 35
22
Thermal Diffusivity, mm2/s 78
3.8
Thermal Shock Resistance, points 13
15

Alloy Composition

Aluminum (Al), % 97.2 to 99.3
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.2
16.5 to 18.5
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.35
58.7 to 66.9
Magnesium (Mg), % 0.4 to 0.8
0
Manganese (Mn), % 0.050 to 0.2
0 to 2.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0
12.5 to 14.5
Nitrogen (N), % 0
0.12 to 0.22
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.3 to 0.6
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0