MakeItFrom.com
Menu (ESC)

6106 Aluminum vs. EN 1.7711 Steel

6106 aluminum belongs to the aluminum alloys classification, while EN 1.7711 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6106 aluminum and the bottom bar is EN 1.7711 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 9.1
16 to 22
Fatigue Strength, MPa 88
290 to 520
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 170
440 to 570
Tensile Strength: Ultimate (UTS), MPa 290
690 to 930
Tensile Strength: Yield (Proof), MPa 220
400 to 800

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 160
430
Melting Completion (Liquidus), °C 660
1460
Melting Onset (Solidus), °C 610
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 190
33
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 49
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 160
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.0
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
2.3
Embodied Energy, MJ/kg 150
32
Embodied Water, L/kg 1190
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
130 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 370
430 to 1690
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 29
24 to 33
Strength to Weight: Bending, points 35
22 to 27
Thermal Diffusivity, mm2/s 78
8.9
Thermal Shock Resistance, points 13
24 to 32

Alloy Composition

Aluminum (Al), % 97.2 to 99.3
0 to 0.015
Carbon (C), % 0
0.36 to 0.44
Chromium (Cr), % 0 to 0.2
0.9 to 1.2
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.35
96 to 97.5
Magnesium (Mg), % 0.4 to 0.8
0
Manganese (Mn), % 0.050 to 0.2
0.45 to 0.85
Molybdenum (Mo), % 0
0.5 to 0.65
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.3 to 0.6
0 to 0.4
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0
0.25 to 0.35
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0