MakeItFrom.com
Menu (ESC)

6106 Aluminum vs. EN 2.4654 Nickel

6106 aluminum belongs to the aluminum alloys classification, while EN 2.4654 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6106 aluminum and the bottom bar is EN 2.4654 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 9.1
17
Fatigue Strength, MPa 88
460
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
77
Shear Strength, MPa 170
770
Tensile Strength: Ultimate (UTS), MPa 290
1250
Tensile Strength: Yield (Proof), MPa 220
850

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 160
1000
Melting Completion (Liquidus), °C 660
1390
Melting Onset (Solidus), °C 610
1330
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 190
13
Thermal Expansion, µm/m-K 23
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.7
8.4
Embodied Carbon, kg CO2/kg material 8.3
10
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1190
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
190
Resilience: Unit (Modulus of Resilience), kJ/m3 370
1810
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 29
42
Strength to Weight: Bending, points 35
31
Thermal Diffusivity, mm2/s 78
3.3
Thermal Shock Resistance, points 13
37

Alloy Composition

Aluminum (Al), % 97.2 to 99.3
1.2 to 1.6
Boron (B), % 0
0.0030 to 0.010
Carbon (C), % 0
0.020 to 0.1
Chromium (Cr), % 0 to 0.2
18 to 21
Cobalt (Co), % 0
12 to 15
Copper (Cu), % 0 to 0.25
0 to 0.1
Iron (Fe), % 0 to 0.35
0 to 2.0
Magnesium (Mg), % 0.4 to 0.8
0
Manganese (Mn), % 0.050 to 0.2
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 5.0
Nickel (Ni), % 0
50.6 to 62.5
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0.3 to 0.6
0 to 0.15
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
2.8 to 3.3
Zinc (Zn), % 0 to 0.15
0
Zirconium (Zr), % 0
0.020 to 0.080
Residuals, % 0 to 0.15
0