MakeItFrom.com
Menu (ESC)

6106 Aluminum vs. CC140C Copper

6106 aluminum belongs to the aluminum alloys classification, while CC140C copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6106 aluminum and the bottom bar is CC140C copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
120
Elongation at Break, % 9.1
11
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
44
Tensile Strength: Ultimate (UTS), MPa 290
340
Tensile Strength: Yield (Proof), MPa 220
230

Thermal Properties

Latent Heat of Fusion, J/g 400
210
Maximum Temperature: Mechanical, °C 160
200
Melting Completion (Liquidus), °C 660
1100
Melting Onset (Solidus), °C 610
1040
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 190
310
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 49
77
Electrical Conductivity: Equal Weight (Specific), % IACS 160
78

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 2.7
8.9
Embodied Carbon, kg CO2/kg material 8.3
2.6
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1190
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
34
Resilience: Unit (Modulus of Resilience), kJ/m3 370
220
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 50
18
Strength to Weight: Axial, points 29
10
Strength to Weight: Bending, points 35
12
Thermal Diffusivity, mm2/s 78
89
Thermal Shock Resistance, points 13
12

Alloy Composition

Aluminum (Al), % 97.2 to 99.3
0
Chromium (Cr), % 0 to 0.2
0.4 to 1.2
Copper (Cu), % 0 to 0.25
98.8 to 99.6
Iron (Fe), % 0 to 0.35
0
Magnesium (Mg), % 0.4 to 0.8
0
Manganese (Mn), % 0.050 to 0.2
0
Silicon (Si), % 0.3 to 0.6
0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0