MakeItFrom.com
Menu (ESC)

6106 Aluminum vs. C87610 Bronze

6106 aluminum belongs to the aluminum alloys classification, while C87610 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6106 aluminum and the bottom bar is C87610 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
110
Elongation at Break, % 9.1
22
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
43
Tensile Strength: Ultimate (UTS), MPa 290
350
Tensile Strength: Yield (Proof), MPa 220
140

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 160
190
Melting Completion (Liquidus), °C 660
970
Melting Onset (Solidus), °C 610
820
Specific Heat Capacity, J/kg-K 900
410
Thermal Conductivity, W/m-K 190
28
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 49
6.1
Electrical Conductivity: Equal Weight (Specific), % IACS 160
6.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
29
Density, g/cm3 2.7
8.5
Embodied Carbon, kg CO2/kg material 8.3
2.6
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1190
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
62
Resilience: Unit (Modulus of Resilience), kJ/m3 370
88
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 50
19
Strength to Weight: Axial, points 29
11
Strength to Weight: Bending, points 35
13
Thermal Diffusivity, mm2/s 78
8.1
Thermal Shock Resistance, points 13
13

Alloy Composition

Aluminum (Al), % 97.2 to 99.3
0
Chromium (Cr), % 0 to 0.2
0
Copper (Cu), % 0 to 0.25
90 to 94
Iron (Fe), % 0 to 0.35
0 to 0.2
Lead (Pb), % 0
0 to 0.2
Magnesium (Mg), % 0.4 to 0.8
0
Manganese (Mn), % 0.050 to 0.2
0 to 0.25
Silicon (Si), % 0.3 to 0.6
3.0 to 5.0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.15
3.0 to 5.0
Residuals, % 0
0 to 0.5