MakeItFrom.com
Menu (ESC)

6106 Aluminum vs. N08320 Stainless Steel

6106 aluminum belongs to the aluminum alloys classification, while N08320 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6106 aluminum and the bottom bar is N08320 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 9.1
40
Fatigue Strength, MPa 88
190
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Shear Strength, MPa 170
400
Tensile Strength: Ultimate (UTS), MPa 290
580
Tensile Strength: Yield (Proof), MPa 220
220

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 660
1400
Melting Onset (Solidus), °C 610
1350
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 190
12
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 49
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 160
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
28
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 8.3
4.9
Embodied Energy, MJ/kg 150
69
Embodied Water, L/kg 1190
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
180
Resilience: Unit (Modulus of Resilience), kJ/m3 370
120
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 29
20
Strength to Weight: Bending, points 35
20
Thermal Diffusivity, mm2/s 78
3.3
Thermal Shock Resistance, points 13
13

Alloy Composition

Aluminum (Al), % 97.2 to 99.3
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.2
21 to 23
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.35
40.4 to 50
Magnesium (Mg), % 0.4 to 0.8
0
Manganese (Mn), % 0.050 to 0.2
0 to 2.5
Nickel (Ni), % 0
25 to 27
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.3 to 0.6
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0