MakeItFrom.com
Menu (ESC)

6106 Aluminum vs. N10001 Nickel

6106 aluminum belongs to the aluminum alloys classification, while N10001 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6106 aluminum and the bottom bar is N10001 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
220
Elongation at Break, % 9.1
45
Fatigue Strength, MPa 88
300
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
84
Shear Strength, MPa 170
550
Tensile Strength: Ultimate (UTS), MPa 290
780
Tensile Strength: Yield (Proof), MPa 220
350

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 160
900
Melting Completion (Liquidus), °C 660
1620
Melting Onset (Solidus), °C 610
1570
Specific Heat Capacity, J/kg-K 900
390
Thermal Expansion, µm/m-K 23
10

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.7
9.2
Embodied Carbon, kg CO2/kg material 8.3
15
Embodied Energy, MJ/kg 150
200
Embodied Water, L/kg 1190
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
290
Resilience: Unit (Modulus of Resilience), kJ/m3 370
280
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
22
Strength to Weight: Axial, points 29
24
Strength to Weight: Bending, points 35
21
Thermal Shock Resistance, points 13
25

Alloy Composition

Aluminum (Al), % 97.2 to 99.3
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.2
0 to 1.0
Cobalt (Co), % 0
0 to 2.5
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.35
4.0 to 6.0
Magnesium (Mg), % 0.4 to 0.8
0
Manganese (Mn), % 0.050 to 0.2
0 to 1.0
Molybdenum (Mo), % 0
26 to 30
Nickel (Ni), % 0
58 to 69.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.3 to 0.6
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0
0.2 to 0.4
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0