MakeItFrom.com
Menu (ESC)

6110 Aluminum vs. EN 1.7376 Steel

6110 aluminum belongs to the aluminum alloys classification, while EN 1.7376 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6110 aluminum and the bottom bar is EN 1.7376 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 2.2
20
Fatigue Strength, MPa 120
320
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
75
Tensile Strength: Ultimate (UTS), MPa 500
710
Tensile Strength: Yield (Proof), MPa 500
460

Thermal Properties

Latent Heat of Fusion, J/g 410
270
Maximum Temperature: Mechanical, °C 170
600
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 600
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 170
26
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
9.2
Electrical Conductivity: Equal Weight (Specific), % IACS 140
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
6.5
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.2
2.1
Embodied Energy, MJ/kg 150
29
Embodied Water, L/kg 1170
88

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
130
Resilience: Unit (Modulus of Resilience), kJ/m3 1770
560
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 51
25
Strength to Weight: Bending, points 51
23
Thermal Diffusivity, mm2/s 67
6.9
Thermal Shock Resistance, points 22
20

Alloy Composition

Aluminum (Al), % 94.4 to 98.4
0
Carbon (C), % 0
0.12 to 0.19
Chromium (Cr), % 0.040 to 0.25
8.0 to 10
Copper (Cu), % 0.2 to 0.7
0 to 0.3
Iron (Fe), % 0 to 0.8
86.2 to 90.6
Magnesium (Mg), % 0.5 to 1.1
0
Manganese (Mn), % 0.2 to 0.7
0.35 to 0.65
Molybdenum (Mo), % 0
0.9 to 1.2
Nickel (Ni), % 0
0 to 0.4
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.7 to 1.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0