MakeItFrom.com
Menu (ESC)

6110 Aluminum vs. EN 2.4608 Nickel

6110 aluminum belongs to the aluminum alloys classification, while EN 2.4608 nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6110 aluminum and the bottom bar is EN 2.4608 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 2.2
34
Fatigue Strength, MPa 120
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
81
Shear Strength, MPa 290
410
Tensile Strength: Ultimate (UTS), MPa 500
620
Tensile Strength: Yield (Proof), MPa 500
270

Thermal Properties

Latent Heat of Fusion, J/g 410
330
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 600
1410
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 170
11
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 2.8
8.5
Embodied Carbon, kg CO2/kg material 8.2
8.4
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1170
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
170
Resilience: Unit (Modulus of Resilience), kJ/m3 1770
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 51
20
Strength to Weight: Bending, points 51
19
Thermal Diffusivity, mm2/s 67
2.9
Thermal Shock Resistance, points 22
16

Alloy Composition

Aluminum (Al), % 94.4 to 98.4
0
Carbon (C), % 0
0.030 to 0.080
Chromium (Cr), % 0.040 to 0.25
24 to 26
Cobalt (Co), % 0
2.5 to 4.0
Copper (Cu), % 0.2 to 0.7
0
Iron (Fe), % 0 to 0.8
11.4 to 23.8
Magnesium (Mg), % 0.5 to 1.1
0
Manganese (Mn), % 0.2 to 0.7
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 0
44 to 47
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.7 to 1.5
0.7 to 1.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.15
0
Tungsten (W), % 0
2.5 to 4.0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0