MakeItFrom.com
Menu (ESC)

6110 Aluminum vs. S82441 Stainless Steel

6110 aluminum belongs to the aluminum alloys classification, while S82441 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6110 aluminum and the bottom bar is S82441 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 2.2
28
Fatigue Strength, MPa 120
400
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
79
Shear Strength, MPa 290
490
Tensile Strength: Ultimate (UTS), MPa 500
760
Tensile Strength: Yield (Proof), MPa 500
550

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 170
1090
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 600
1380
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 170
15
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
16
Density, g/cm3 2.8
7.7
Embodied Carbon, kg CO2/kg material 8.2
3.2
Embodied Energy, MJ/kg 150
45
Embodied Water, L/kg 1170
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
190
Resilience: Unit (Modulus of Resilience), kJ/m3 1770
740
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 51
27
Strength to Weight: Bending, points 51
24
Thermal Diffusivity, mm2/s 67
3.9
Thermal Shock Resistance, points 22
21

Alloy Composition

Aluminum (Al), % 94.4 to 98.4
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.040 to 0.25
23 to 25
Copper (Cu), % 0.2 to 0.7
0.1 to 0.8
Iron (Fe), % 0 to 0.8
62.6 to 70.2
Magnesium (Mg), % 0.5 to 1.1
0
Manganese (Mn), % 0.2 to 0.7
2.5 to 4.0
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 0
3.0 to 4.5
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0.7 to 1.5
0 to 0.7
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0