MakeItFrom.com
Menu (ESC)

6110A Aluminum vs. 204.0 Aluminum

Both 6110A aluminum and 204.0 aluminum are aluminum alloys. They have a very high 96% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 6110A aluminum and the bottom bar is 204.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
71
Elongation at Break, % 11 to 18
5.7 to 7.8
Fatigue Strength, MPa 140 to 210
63 to 77
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 360 to 470
230 to 340
Tensile Strength: Yield (Proof), MPa 250 to 430
180 to 220

Thermal Properties

Latent Heat of Fusion, J/g 410
390
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 650
650
Melting Onset (Solidus), °C 600
580
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 160
120
Thermal Expansion, µm/m-K 23
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
29 to 34
Electrical Conductivity: Equal Weight (Specific), % IACS 140
87 to 100

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.8
3.0
Embodied Carbon, kg CO2/kg material 8.4
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1170
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47 to 58
12 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 450 to 1300
220 to 350
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
46
Strength to Weight: Axial, points 36 to 47
21 to 31
Strength to Weight: Bending, points 41 to 48
28 to 36
Thermal Diffusivity, mm2/s 65
46
Thermal Shock Resistance, points 16 to 21
12 to 18

Alloy Composition

Aluminum (Al), % 94.8 to 98
93.4 to 95.5
Chromium (Cr), % 0.050 to 0.25
0
Copper (Cu), % 0.3 to 0.8
4.2 to 5.0
Iron (Fe), % 0 to 0.5
0 to 0.35
Magnesium (Mg), % 0.7 to 1.1
0.15 to 0.35
Manganese (Mn), % 0.3 to 0.9
0 to 0.1
Nickel (Ni), % 0
0 to 0.050
Silicon (Si), % 0.7 to 1.1
0 to 0.2
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.2
0.15 to 0.3
Zinc (Zn), % 0 to 0.2
0 to 0.1
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0
0 to 0.15

Comparable Variants