MakeItFrom.com
Menu (ESC)

6110A Aluminum vs. ASTM A387 Grade 12 Steel

6110A aluminum belongs to the aluminum alloys classification, while ASTM A387 grade 12 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6110A aluminum and the bottom bar is ASTM A387 grade 12 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 11 to 18
25
Fatigue Strength, MPa 140 to 210
190 to 230
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 220 to 280
300 to 330
Tensile Strength: Ultimate (UTS), MPa 360 to 470
470 to 520
Tensile Strength: Yield (Proof), MPa 250 to 430
260 to 310

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 190
430
Melting Completion (Liquidus), °C 650
1470
Melting Onset (Solidus), °C 600
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 160
44
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.8
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.4
1.6
Embodied Energy, MJ/kg 150
21
Embodied Water, L/kg 1170
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47 to 58
98 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 450 to 1300
180 to 250
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 36 to 47
16 to 18
Strength to Weight: Bending, points 41 to 48
17 to 18
Thermal Diffusivity, mm2/s 65
12
Thermal Shock Resistance, points 16 to 21
14 to 15

Alloy Composition

Aluminum (Al), % 94.8 to 98
0
Carbon (C), % 0
0.050 to 0.17
Chromium (Cr), % 0.050 to 0.25
0.8 to 1.2
Copper (Cu), % 0.3 to 0.8
0
Iron (Fe), % 0 to 0.5
97 to 98.2
Magnesium (Mg), % 0.7 to 1.1
0
Manganese (Mn), % 0.3 to 0.9
0.4 to 0.65
Molybdenum (Mo), % 0
0.45 to 0.6
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.7 to 1.1
0.15 to 0.4
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0