MakeItFrom.com
Menu (ESC)

6110A Aluminum vs. EN 1.4002 Stainless Steel

6110A aluminum belongs to the aluminum alloys classification, while EN 1.4002 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6110A aluminum and the bottom bar is EN 1.4002 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 11 to 18
19
Fatigue Strength, MPa 140 to 210
160
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 220 to 280
310
Tensile Strength: Ultimate (UTS), MPa 360 to 470
500
Tensile Strength: Yield (Proof), MPa 250 to 430
260

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 190
760
Melting Completion (Liquidus), °C 650
1440
Melting Onset (Solidus), °C 600
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 160
30
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 140
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.0
Density, g/cm3 2.8
7.7
Embodied Carbon, kg CO2/kg material 8.4
1.9
Embodied Energy, MJ/kg 150
27
Embodied Water, L/kg 1170
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47 to 58
80
Resilience: Unit (Modulus of Resilience), kJ/m3 450 to 1300
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 36 to 47
18
Strength to Weight: Bending, points 41 to 48
18
Thermal Diffusivity, mm2/s 65
8.1
Thermal Shock Resistance, points 16 to 21
18

Alloy Composition

Aluminum (Al), % 94.8 to 98
0.1 to 0.3
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0.050 to 0.25
12 to 14
Copper (Cu), % 0.3 to 0.8
0
Iron (Fe), % 0 to 0.5
83.6 to 87.9
Magnesium (Mg), % 0.7 to 1.1
0
Manganese (Mn), % 0.3 to 0.9
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.7 to 1.1
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0