MakeItFrom.com
Menu (ESC)

6110A Aluminum vs. EN 1.4646 Stainless Steel

6110A aluminum belongs to the aluminum alloys classification, while EN 1.4646 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6110A aluminum and the bottom bar is EN 1.4646 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 11 to 18
34
Fatigue Strength, MPa 140 to 210
340
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 220 to 280
500
Tensile Strength: Ultimate (UTS), MPa 360 to 470
750
Tensile Strength: Yield (Proof), MPa 250 to 430
430

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 190
910
Melting Completion (Liquidus), °C 650
1390
Melting Onset (Solidus), °C 600
1340
Specific Heat Capacity, J/kg-K 900
480
Thermal Expansion, µm/m-K 23
17

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
13
Density, g/cm3 2.8
7.7
Embodied Carbon, kg CO2/kg material 8.4
2.8
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1170
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47 to 58
220
Resilience: Unit (Modulus of Resilience), kJ/m3 450 to 1300
460
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 36 to 47
27
Strength to Weight: Bending, points 41 to 48
24
Thermal Shock Resistance, points 16 to 21
16

Alloy Composition

Aluminum (Al), % 94.8 to 98
0
Carbon (C), % 0
0.020 to 0.1
Chromium (Cr), % 0.050 to 0.25
17 to 19
Copper (Cu), % 0.3 to 0.8
1.5 to 3.0
Iron (Fe), % 0 to 0.5
59 to 67.3
Magnesium (Mg), % 0.7 to 1.1
0
Manganese (Mn), % 0.3 to 0.9
10.5 to 12.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
3.5 to 4.5
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0.7 to 1.1
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0