MakeItFrom.com
Menu (ESC)

6110A Aluminum vs. EN 1.4980 Stainless Steel

6110A aluminum belongs to the aluminum alloys classification, while EN 1.4980 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6110A aluminum and the bottom bar is EN 1.4980 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 11 to 18
17
Fatigue Strength, MPa 140 to 210
410
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
75
Shear Strength, MPa 220 to 280
630
Tensile Strength: Ultimate (UTS), MPa 360 to 470
1030
Tensile Strength: Yield (Proof), MPa 250 to 430
680

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 190
920
Melting Completion (Liquidus), °C 650
1430
Melting Onset (Solidus), °C 600
1380
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 160
13
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
26
Density, g/cm3 2.8
7.9
Embodied Carbon, kg CO2/kg material 8.4
6.0
Embodied Energy, MJ/kg 150
87
Embodied Water, L/kg 1170
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47 to 58
150
Resilience: Unit (Modulus of Resilience), kJ/m3 450 to 1300
1180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 36 to 47
36
Strength to Weight: Bending, points 41 to 48
28
Thermal Diffusivity, mm2/s 65
3.5
Thermal Shock Resistance, points 16 to 21
22

Alloy Composition

Aluminum (Al), % 94.8 to 98
0 to 0.35
Boron (B), % 0
0.0030 to 0.010
Carbon (C), % 0
0.030 to 0.080
Chromium (Cr), % 0.050 to 0.25
13.5 to 16
Copper (Cu), % 0.3 to 0.8
0
Iron (Fe), % 0 to 0.5
49.2 to 58.5
Magnesium (Mg), % 0.7 to 1.1
0
Manganese (Mn), % 0.3 to 0.9
1.0 to 2.0
Molybdenum (Mo), % 0
1.0 to 1.5
Nickel (Ni), % 0
24 to 27
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.7 to 1.1
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
1.9 to 2.3
Vanadium (V), % 0
0.1 to 0.5
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0